‘ |
y www.lloseng.com’

Object-Oriented Software Engineering

Chapter 2:
Review of Object Orientation

2.1 What is Object Orientation?

Procedural Oriented Programming:

 Each steps 1s executed 1n a systematic manner so that the
computer can understand what to do (step by step).

» C called procedural orientation language because large
program is divided into modules.

—Groups together the pieces of data that describe
some entity

—Helps reduce the system’s complexity.

Object oriented Programming:

» Organizing your code by creating objects, and then you
can give those objects properties.

© Lethbridge/Laganiére 2005 Chapter 2: Review of Object Orientation 2

Object Oriented

An approach to the solution of problems in which all
computations are performed in the context of objects.

» The objects are instances of classes, which:
—are data abstractions

—contain procedural abstractions that operate on the
objects

* A running program can be seen as a collection of objects
collaborating to perform a given task

© Lethbridge/Laganiére 2005 Chapter 2: Review of Object Orientation 3

Assignments 1

What are a differences between procedural and object
oriented programming?

Parameter :

e Definition

* Approach

* Access modifiers
* Complexity

Inheritance

L) J
‘ g ' www.lloseng.com
4
"/ © Lethbridge/Laganiére 2005 Chapter 2: Review of Object Orientation

A View of the Two paradigms

main

(perfmmTransactionJ

| N\ N
[credlt] [debﬂ) computelnterest || computekees
if checking if checking
then xxx then xxx
if savings if savings
then xxx then xxx
fc.
L EIC J e

Account

credit()
debit()

/\

CheckingAccount SavingsAccount
computelnterest() computelnterest()
computeFees() computeFees()

NN\
www.lloseng.com

Chapter 2: Review of Object Orientation

http://bit.ly/pxhlOO

2.2 Classes and Objects

Object
e A chunk of structured data in a running software system

* Has properties
—Represent its state

 Has behaviour
—How 1t acts and reacts

—May simulate the behaviour of an object in the real
world

www.lloseng.com

P
T 4
Q‘/ © Lethbridge/Laganiére 2005 Chapter 2: Review of Object Orientation

Objects

Jane:

Greg:

dateOfBirth="1955/02/02"
address="99 UML St.”
position="Manager”

Savings account 12876:

balance=1976.32
opened="1999/03/03

dateOfBirth="1970/01/01"
address="75 Object Dr.”

Margaret:
———

dateOfBirth="1984/03/03"

address="150 C++ Rd.”
position="Teller”

Instant teller 876:

location="Java Valley Cafe”

Mortgage account 29865:

balance=198760.00
opened="2003/08/12"
property="75 Object Dr.”

Transaction 487:

amount=200.00
time="2001/09/01 14:30"

NN\
www.lloseng.com

Chapter 2: Review of Object Orientation

Classes

A class:
« A unit of abstraction 1n an object oriented (OO) program

* Represents similar objects

—Its instances

A kind of software module
—Describes its instances’ structure (properties)

—Contains methods to implement their behaviour

www.lloseng.com

P
7
“/ © Lethbridge/Laganiére 2005 Chapter 2: Review of Object Orientation 8

Naming classes

» Use capital letters
—FE.g. BankAccount not bankAccount

e Use singular nouns

 Use the right level of generality
—E.g. Municipality, not City

» Make sure the name has only one meaning

—E.g. ‘bus’ has several meanings

www.lloseng.com

’
P
"/ © Lethbridge/Laganiére 2005 Chapter 2: Review of Object Orientation

2.3 Instance Variables

Variables defined inside a class and are used to store
values in an object

 Also called fields or member variables

e Attributes

—Simple data
—LE.g. name, dateOfBirth

 Associations
—Relationships to other important classes
—FE.g. supervisor, coursesTaken
—More on these in Chapter 5

© Lethbridge/Laganiére 2005 Chapter 2: Review of Object Orientation 10

Variables vs. Objects

A variable
* Refers to an object
* May refer to different objects at different points in time

An object can be referred to by several different
variables at the same time

Type of a variable

» Determines what classes of objects it may contain

© Lethbridge/Laganiére 2005 Chapter 2: Review of Object Orientation

11

Class variables

A class variable’s value is shared by all instances of a
class.

* Also called a static variable

 [f one instance sets the value of a class variable, then all
the other instances see the same changed value.

 Class variables are useful for:
—Default or ‘constant’ values (e.g. PI)

—Lookup tables and similar structures

Caution: do not over-use class variables

© Lethbridge/Laganiére 2005 Chapter 2: Review of Object Orientation 12

2.4 Methods, Operations and Polymorphism

Operation

A higher-level procedural abstraction that specifies a
type of behaviour

 Independent of any code which implements that
behaviour

—E.g. calculating area (in general)

L)
‘ > , www.lloseng.com
4
“/ © Lethbridge/Laganiére 2005 Chapter 2: Review of Object Orientation 13

Methods, Operations and Polymorphism

Method

« A procedural abstraction used to 1mplement the
behaviour of a class

e Several different classes can have methods with the
same name

—They 1implement the same abstract operation in ways
suitable to each class

—E.g. calculating area 1n a rectangle is done
differently from 1n a circle

© Lethbridge/Laganiére 2005 Chapter 2: Review of Object Orientation 14

Polymorphism

A property of object oriented software by which an
abstract operation may be performed in different ways in
different classes.

* Requires that there be multiple methods of the same
name

* The choice of which one to execute depends on the
object that 1s 1n a variable

* Reduces the need for programmers to code many if-
else or switch statements

© Lethbridge/Laganiére 2005 Chapter 2: Review of Object Orientation 15

2.5 Organizing Classes into Inheritance
Hierarchies

Superclasses
» Contain features common to a set of subclasses

Inheritance hierarchies

« Show the relationships among superclasses and
subclasses

* A triangle shows a generalization A

Inheritance

» The implicit possession by all subclasses of features
defined 1n its superclasses

© Lethbridge/Laganiére 2005 Chapter 2: Review of Object Orientation 16

An Example Inheritance Hierarchy

Account

/\

SavingsAccount

Inheritance

CheckingAccount

Mortgage Account

» The implicit possession by all subclasses of features

defined 1n its superclasses

www.lloseng.com

Chapter 2: Review of Object Orientation 17

http://try.umple.org/?text=class%20Account%20%7B%7D%0Aclass%20SavingsAccount%20%7B%20isA%20Account;%20%7D%0Aclass%20CheckingAccount%20%7B%20isA%20Account;%20%7D%0Aclass%20MortgageAccount%20%7B%20isA%20Account;%20%7D//$?%5BEnd_of_model%5D$?%0A%0Aclass%20Account%0A%7B%0A%20%20position%20148%2026%20109%2045;%0A%7D%0A%0Aclass%20SavingsAccount%0A%7B%0A%20%20position%2021%20126%20118%2045;%0A%7D%0A%0Aclass%20MortgageAccount%0A%7B%0A%20%20position%20305%20126%20125%2045;%0A%7D%0A%0Aclass%20CheckingAccount%0A%7B%0A%20%20position%20162%20125%20125%2045;%0A%7D

A possible inheritance hierarchy of
mathematical objects

MathematicalObject

AN

Shape Point Matrix

|
Shape2D Shape3D

7N

Ellipse Polygon Line Plane

AN /\

Circle Quadrilateral

4

Rectangle

© Lethbridge/Laganiére 2005 Chapter 2: Review of Object Orientation

Make Sure all Inherited Features Make
Sense In Subclasses

Account

balance
openedDate
creditOrOverdraftlinut

credit()
debit()

/\

SavingsAccount

CheckingAccount

highestCheckNumber

Mortgage Account

withdrawUsingCheck()
calculateServiceCharge()

collateralProperty
collateralValue

setCollaterai ame()

WAWW . TTOSENT.COM’ e

Chapter 2: Review of Object Orientation 19

2.6 Inheritance, Polymorphism
and Variables

center

translate()
getCenter()
rofate()
changeScale()
getArea()
getPerimeterlength()
getBoundingReci()
[4_\ |
EllipticalShape Polygon
semiMajorAxis getBoundingRect()
Z'.l getVertices()
| | & |
Circle Ellipse SimplePolygon ArbitraryPolygon
rotate() semiMinorAxis . . .
changeScale() orientation orienlafion points
getAreal) rofate() addPoint()
getPerimeterlength() rclf-ltule{l Scal getOrientation() removePoint(]
getBoundingReci() changeScale() 4‘_\‘ rotate)
getRadius() ge‘rAre.q{] changeScale()
getPerimeterlength() [| getAreal)
getBoundingReci() Rectangle RegularPolygon getPerimeterlength()
getOrientation() geiVeriices()
getSemiMajorAxis() || height numPoints
getSemiMinorAxis() || width radius
getfocusl() changeScale() changeNumPoints|)
geifocus2() setHeight() changeScale|)
setWidth() getAreal)
getAreal) getPerimeterlength() N
getPerimeterlength() || getVertices()
getVertices()
getBoundingRecit()

20

Abstract Classes and Methods

An operation should be declared to exist at the highest
class in the hierarchy where it makes sense

* The operation may be abstract (lacking implementation)
at that level

* [f so, the class also must be abstract
—No 1nstances can be created

e If a superclass has an abstract operation then its subclasses
at some level must have a concrete method for the
operation

—Leaf classes must have or inherit concrete methods for
all operations

—Leaf classes must be concrete

© Lethbridge/Laganiére 2005 Chapter 2: Review of Object Orientation 21

Overriding

A method would be inherited, but a subclass contains a
new version instead

» For restriction
—E.g. scale (x,y) would not workin Circle

» For extension

—E.g. SavingsAccount might charge an extra fee
following every debit

 For optimization
—E.g. The getPerimeterLength method in
Circle is much simpler than the one in E11ipse

© Lethbridge/Laganiére 2005 Chapter 2: Review of Object Orientation 22

2.7 Concepts that Define Object Orientation

The following are necessary for a system or language to be OO
* Identity

—FEach object is distinct from each other object, and can be referred
to

—Two objects are distinct even if they have the same data
 Classes

—The code 1s organized using classes, each of which describes a set
of objects

e Inheritance

—The mechanism where features in a hierarchy inherit from
superclasses to subclasses

* Polymorphism
—The mechanism by which several methods can have the same
name and implement the same abstract operation.

© Lethbridge/Laganiére 2005 Chapter 2: Review of Object Orientation 23

Other Key Concepts

Abstraction

* Object -> something in the world

 Class -> objects

» Superclass-> subclasses

e Operation -> methods

 Attributes and associations -> instance variables
Modularity

* Code can be constructed entirely of classes
Encapsulation

* Details can be hidden 1n classes

 This gives rise to information hiding:

—Programmers do not need to know all the details of a class

WWW. | 0SENY.COM e

P
T /
“/ © Lethbridge/Laganiére 2005 Chapter 2: Review of Object Orientation 24

Access control

Applies to methods and variables
epublic
—Any class can access
eprotected
—Only code 1n the package, or subclasses can access
e (blank)
—Only code 1n the package can access
eprivate

—Only code written in the class can access

/ —Inheritance still occurs!
¥,

¢ %5
‘ > , www.lloseng.com

4
“/ © Lethbridge/Laganiére 2005 Chapter 2: Review of Object Orientation 25

Programming Style Guidelines

Remember that programs are for people to read
» Always choose the simpler alternative
* Reject clever code that 1s hard to understand
 Shorter code 1s not necessarily better

Choose good names

* Make them highly descriptive

* Do not worry about using long names

© Lethbridge/Laganiére 2005 Chapter 2: Review of Object Orientation

26

Programming style ...

Comment extensively
 Comment whatever 1s non-obvious

* Do not comment the obvious
 Comments should be 25-50% of the code

Organize class elements consistently

 Variables, constructors, public methods then private
methods

Be consistent regarding layout of code

© Lethbridge/Laganiére 2005 Chapter 2: Review of Object Orientation

27

Programming style ...

Avoid duplication of code
* Do not ‘clone’ if possible
—Create a new method and call 1t
—Cloning results 1n two copies that may both have
bugs
- When one copy of the bug 1s fixed, the other may
be forgotten

www.lloseng.com

P
T
~‘ / © Lethbridge/Laganitre 2005 Chapter 2: Review of Object Orientation 28

2.10 Difficulties and Risks in Object-
Oriented Programming

Language evolution and deprecated features:

« Java is evolving, so some features are ‘deprecated’ at
every release

e But the same thing 1s true of most other languages

Efficiency can be a concern in some object oriented
systems

« Java can be less efficient than other languages

—VM-based
—Dynamic binding

© Lethbridge/Laganiére 2005 Chapter 2: Review of Object Orientation 29

	Slide 1: Object-Oriented Software Engineering
	Slide 2: 2.1 What is Object Orientation?
	Slide 3: Object Oriented
	Slide 4: Assignments 1
	Slide 5: A View of the Two paradigms
	Slide 6: 2.2 Classes and Objects
	Slide 7: Objects
	Slide 8: Classes
	Slide 9: Naming classes
	Slide 10: 2.3 Instance Variables
	Slide 11: Variables vs. Objects
	Slide 12: Class variables
	Slide 13: 2.4 Methods, Operations and Polymorphism
	Slide 14: Methods, Operations and Polymorphism
	Slide 15: Polymorphism
	Slide 16: 2.5 Organizing Classes into Inheritance Hierarchies
	Slide 17: An Example Inheritance Hierarchy
	Slide 18: A possible inheritance hierarchy of mathematical objects
	Slide 19: Make Sure all Inherited Features Make Sense in Subclasses
	Slide 20: 2.6 Inheritance, Polymorphism and Variables
	Slide 21: Abstract Classes and Methods
	Slide 22: Overriding
	Slide 23: 2.7 Concepts that Define Object Orientation
	Slide 24: Other Key Concepts
	Slide 25: Access control
	Slide 26: Programming Style Guidelines
	Slide 27: Programming style …
	Slide 28: Programming style …
	Slide 29: 2.10 Difficulties and Risks in Object-Oriented Programming

