
Object-Oriented Software Engineering

Chapter 2: 

Review of Object Orientation 



© Lethbridge/Laganière 2005 Chapter 2: Review of Object Orientation 2

2.1 What is Object Orientation?

Procedural Oriented Programming:

• Each steps is executed in a systematic manner so that the 
computer can understand what to do (step by step). 

• C called procedural orientation language because large 
program is divided into modules.

—Groups together the pieces of data that describe 
some entity 

—Helps reduce the system’s complexity. 

Object oriented Programming: 

• Organizing your code by creating objects, and then you 
can give those objects properties. 



© Lethbridge/Laganière 2005 Chapter 2: Review of Object Orientation 3

Object Oriented

An approach to the solution of problems in which all 

computations are performed in the context of objects. 

• The objects are instances of classes, which:

—are data abstractions

—contain procedural abstractions that operate on the 

objects

• A running program can be seen as a collection of objects 

collaborating to perform a given task 



Assignments 1

What are a differences between procedural and object 

oriented programming?

Parameter :

• Definition 

• Approach

• Access modifiers

• Complexity

• Inheritance 

© Lethbridge/Laganière 2005 Chapter 2: Review of Object Orientation 4



© Lethbridge/Laganière 2005 Chapter 2: Review of Object Orientation 5

A View of the Two paradigms

See in Umple

http://bit.ly/pxhlOO


© Lethbridge/Laganière 2005 Chapter 2: Review of Object Orientation 6

2.2 Classes and Objects

Object

• A chunk of structured data in a running software system 

• Has properties

—Represent its state

• Has behaviour

—How it acts and reacts

—May simulate the behaviour of an object in the real 

world



© Lethbridge/Laganière 2005 Chapter 2: Review of Object Orientation 7

Objects



© Lethbridge/Laganière 2005 Chapter 2: Review of Object Orientation 8

Classes

A class:

• A unit of abstraction in an object oriented (OO) program 

• Represents similar objects

—Its instances

• A kind of software module

—Describes its instances’ structure (properties)

—Contains methods to implement their behaviour



© Lethbridge/Laganière 2005 Chapter 2: Review of Object Orientation 9

Naming classes

• Use capital letters

—E.g. BankAccount not bankAccount

• Use singular nouns

• Use the right level of generality

—E.g. Municipality, not City

• Make sure the name has only one meaning

—E.g. ‘bus’ has several meanings



© Lethbridge/Laganière 2005 Chapter 2: Review of Object Orientation 10

2.3 Instance Variables

Variables defined inside a class and are used to store 
values in an object

• Also called fields or member variables

• Attributes

—Simple data

—E.g. name, dateOfBirth

• Associations

—Relationships to other important classes

—E.g. supervisor, coursesTaken

—More on these in Chapter 5



© Lethbridge/Laganière 2005 Chapter 2: Review of Object Orientation 11

Variables vs. Objects

A variable

• Refers to an object 

• May refer to different objects at different points in time

An object can be referred to by several different 

variables at the same time

Type of a variable

• Determines what classes of objects it may contain 



© Lethbridge/Laganière 2005 Chapter 2: Review of Object Orientation 12

Class variables 

A class variable’s value is shared by all instances of a 

class. 

• Also called a static variable

• If one instance sets the value of a class variable, then all 

the other instances see the same changed value. 

• Class variables are useful for:

—Default or ‘constant’ values (e.g. PI)

—Lookup tables and similar structures

Caution: do not over-use class variables 



© Lethbridge/Laganière 2005 Chapter 2: Review of Object Orientation 13

2.4 Methods, Operations and Polymorphism

Operation

• A higher-level procedural abstraction that specifies a 

type of behaviour

• Independent of any code which implements that 

behaviour

—E.g. calculating area (in general)



© Lethbridge/Laganière 2005 Chapter 2: Review of Object Orientation 14

Methods, Operations and Polymorphism

Method

• A procedural abstraction used to implement the 

behaviour of a class

• Several different classes can have methods with the 

same name

—They implement the same abstract operation in ways 

suitable to each class 

—E.g. calculating area in a rectangle is done 

differently from in a circle



© Lethbridge/Laganière 2005 Chapter 2: Review of Object Orientation 15

Polymorphism

A property of object oriented software by which an 

abstract operation may be performed in different ways in 

different classes.

• Requires that there be multiple methods of the same 

name

• The choice of which one to execute depends on the 

object that is in a variable

• Reduces the need for programmers to code many if-

else or switch statements



© Lethbridge/Laganière 2005 Chapter 2: Review of Object Orientation 16

2.5 Organizing Classes into Inheritance 

Hierarchies

Superclasses

• Contain features common to a set of subclasses

Inheritance hierarchies

• Show the relationships among superclasses and 
subclasses

• A triangle shows a generalization

Inheritance

• The implicit possession by all subclasses of features 
defined in its superclasses



© Lethbridge/Laganière 2005 Chapter 2: Review of Object Orientation 17

An Example Inheritance Hierarchy

Inheritance

• The implicit possession by all subclasses of features 
defined in its superclasses

See in Umple

http://try.umple.org/?text=class%20Account%20%7B%7D%0Aclass%20SavingsAccount%20%7B%20isA%20Account;%20%7D%0Aclass%20CheckingAccount%20%7B%20isA%20Account;%20%7D%0Aclass%20MortgageAccount%20%7B%20isA%20Account;%20%7D//$?%5BEnd_of_model%5D$?%0A%0Aclass%20Account%0A%7B%0A%20%20position%20148%2026%20109%2045;%0A%7D%0A%0Aclass%20SavingsAccount%0A%7B%0A%20%20position%2021%20126%20118%2045;%0A%7D%0A%0Aclass%20MortgageAccount%0A%7B%0A%20%20position%20305%20126%20125%2045;%0A%7D%0A%0Aclass%20CheckingAccount%0A%7B%0A%20%20position%20162%20125%20125%2045;%0A%7D


© Lethbridge/Laganière 2005 Chapter 2: Review of Object Orientation 18

A possible inheritance hierarchy of 

mathematical objects 

Rectangle

QuadrilateralCircle

Ellipse Polygon PlaneLine

Shape3DShape2D

MatrixShape Point

MathematicalObject



© Lethbridge/Laganière 2005 Chapter 2: Review of Object Orientation 19

Make Sure all Inherited Features Make 

Sense in Subclasses



© Lethbridge/Laganière 2005 Chapter 2: Review of Object Orientation 20

2.6 Inheritance, Polymorphism 

and Variables



© Lethbridge/Laganière 2005 Chapter 2: Review of Object Orientation 21

Abstract Classes and Methods

An operation should be declared to exist at the highest 
class in the hierarchy where it makes sense

• The operation may be abstract (lacking implementation) 
at that level

• If so, the class also must be abstract

—No instances can be created

• If a superclass has an abstract operation then its subclasses 
at some level must have a concrete method for the 
operation

—Leaf classes must have or inherit concrete methods for 
all operations

—Leaf classes must be concrete



© Lethbridge/Laganière 2005 Chapter 2: Review of Object Orientation 22

Overriding

A method would be inherited, but a subclass contains a 

new version instead

• For restriction

—E.g. scale(x,y) would not work in Circle

• For extension

—E.g. SavingsAccount might charge an extra fee 

following every debit

• For optimization

—E.g. The getPerimeterLength method in 

Circle is much simpler than the one in Ellipse



© Lethbridge/Laganière 2005 Chapter 2: Review of Object Orientation 23

2.7 Concepts that Define Object Orientation 
The following are necessary for a system or language to be OO

• Identity

—Each object is distinct from each other object, and can be referred 

to

—Two objects are distinct even if they have the same data

• Classes

—The code is organized using classes, each of which describes a set 

of objects

• Inheritance

—The mechanism where features in a hierarchy inherit from 

superclasses to subclasses

• Polymorphism

—The mechanism by which several methods can have the same 

name and implement the same abstract operation.



© Lethbridge/Laganière 2005 Chapter 2: Review of Object Orientation 24

Other Key Concepts
Abstraction

• Object -> something in the world

• Class -> objects

• Superclass -> subclasses

• Operation -> methods

• Attributes and associations -> instance variables

Modularity

• Code can be constructed entirely of classes

Encapsulation

• Details can be hidden in classes

• This gives rise to information hiding: 

—Programmers do not need to know all the details of a class 



© Lethbridge/Laganière 2005 Chapter 2: Review of Object Orientation 25

Access control

Applies to methods and variables

•public

—Any class can access

•protected

—Only code in the package, or subclasses can access

• (blank)

—Only code in the package can access

•private

—Only code written in the class can access

—Inheritance still occurs!



© Lethbridge/Laganière 2005 Chapter 2: Review of Object Orientation 26

Programming Style Guidelines

Remember that programs are for people to read

• Always choose the simpler alternative

• Reject clever code that is hard to understand

• Shorter code is not necessarily better

Choose good names

• Make them highly descriptive

• Do not worry about using long names



© Lethbridge/Laganière 2005 Chapter 2: Review of Object Orientation 27

Programming style …

Comment extensively

• Comment whatever is non-obvious

• Do not comment the obvious

• Comments should be 25-50% of the code

Organize class elements consistently

• Variables, constructors, public methods then private 

methods

Be consistent regarding layout of code



© Lethbridge/Laganière 2005 Chapter 2: Review of Object Orientation 28

Programming style …

Avoid duplication of code

• Do not ‘clone’ if possible

—Create a new method and call it

—Cloning results in two copies that may both have 

bugs

- When one copy of the bug is fixed, the other may 

be forgotten



© Lethbridge/Laganière 2005 Chapter 2: Review of Object Orientation 29

2.10 Difficulties and Risks in Object-

Oriented Programming

Language evolution and deprecated features: 

• Java is evolving, so some features are ‘deprecated’ at 

every release

• But the same thing is true of most other languages

Efficiency can be a concern in some object oriented 

systems 

• Java can be less efficient than other languages

—VM-based

—Dynamic binding


	Slide 1: Object-Oriented Software Engineering 
	Slide 2: 2.1 What is Object Orientation?
	Slide 3: Object Oriented
	Slide 4: Assignments 1
	Slide 5: A View of the Two paradigms
	Slide 6: 2.2 Classes and Objects
	Slide 7: Objects
	Slide 8: Classes
	Slide 9: Naming classes
	Slide 10: 2.3 Instance Variables
	Slide 11: Variables vs. Objects
	Slide 12: Class variables 
	Slide 13: 2.4 Methods, Operations and Polymorphism
	Slide 14: Methods, Operations and Polymorphism
	Slide 15: Polymorphism
	Slide 16: 2.5 Organizing Classes into Inheritance Hierarchies
	Slide 17: An Example Inheritance Hierarchy
	Slide 18: A possible inheritance hierarchy of mathematical objects 
	Slide 19: Make Sure all Inherited Features Make Sense in Subclasses
	Slide 20: 2.6 Inheritance, Polymorphism and Variables
	Slide 21: Abstract Classes and Methods
	Slide 22: Overriding
	Slide 23: 2.7 Concepts that Define Object Orientation 
	Slide 24: Other Key Concepts
	Slide 25: Access control
	Slide 26: Programming Style Guidelines
	Slide 27: Programming style …
	Slide 28: Programming style …
	Slide 29: 2.10 Difficulties and Risks in Object-Oriented Programming

